Capnography 101

James A Temple BA, NRP, CCP
Expected Outcomes

1. Gain a working knowledge of the physiology and science behind End-Tidal CO₂.
2. Relate End-Tidal CO₂ to ventilation, perfusion, and metabolism.
3. Review the clinical efficacy and pitfalls of using End-Tidal CO₂ to drive patient care.
The best thing an old firefighter can teach a young firefighter is how to be an old firefighter!

DFitch
firemedicart.com
©2012
Current Practice Survey
Oxygenation

Measured by pulse oximetry (SpO₂)
• Noninvasive measurement
• Percentage of oxygen in red blood cells
• Changes in ventilation take minutes to be detected
• Affected by motion, artifact, poor perfusion and some dysrhythmias
<table>
<thead>
<tr>
<th>POX Capers</th>
<th>Nail polish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor peripheral perfusion</td>
<td>Acrylic nails **</td>
</tr>
<tr>
<td>Hypotension</td>
<td>Increasingly inaccurate with BP</td>
</tr>
<tr>
<td>Hypo-perfusion</td>
<td>below 80 systolic</td>
</tr>
<tr>
<td>Vasoconstriction</td>
<td>(hypo-perfusion)</td>
</tr>
<tr>
<td></td>
<td>Probe location</td>
</tr>
</tbody>
</table>

Trauma Patients?
<table>
<thead>
<tr>
<th>Oxygen Saturation</th>
<th>PaO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>90 mmHg</td>
</tr>
<tr>
<td>90%</td>
<td>60 mmHg</td>
</tr>
<tr>
<td>60%</td>
<td>30 mmHg</td>
</tr>
<tr>
<td>50%</td>
<td>27 mmHg</td>
</tr>
</tbody>
</table>
Probe location choice

maybe as long as 30 sec lag time if probe is out in the customary position, ie distal finger/toe.

Forehead or earlobe are closer to central circulation, giving quicker information in critically ill patients (SHOCK / TRAUMA)
Pulse Ox Limitations

PaO₂ of 80 – 400 mmHg correlates with SPO₂ within normal range*

No measure of cardiac performance

1. Your decreased cardiac output patients who experience rapid desaturation and have delayed response to pulmonary ventilation should not surprise you.

Normal PaO₂ does NOT ensure adequate ventilation!

1. Minimal volume of gas exchange is often acceptable for oxygenation. **CO₂ removal relies on adequate pulmonary ventilation.**
Can We Do Better?
Oximetry and Capnography

Pulse oximetry measures oxygenation

Capnography measures ventilation and provides a graphical waveform available for interpretation
Ventilation

Measured by the end-tidal CO$_2$

• Partial pressure (mmHg) or volume (% vol) of CO$_2$ in the airway at the end of exhalation

• Breath-to-breath measurement provides information within seconds

• Not affected by motion artifact, poor perfusion or dysrhythmias
THIS IS WHY
YOU NEVER TAKE THE TOP BAG
ETCO$_2$

Directly measures – Elimination of CO$_2$

Indirectly measures:

1. Changes in tissue level production of CO$_2$
2. Delivery to lungs via circulation
CO₂ Elimination
Metabolic production
Venous return
Pulmonary circulation

Monitoring way more than just a number!
End-tidal CO$_2$ (EtCO$_2$)

Reflects changes in

- **Ventilation** - movement of air in and out of the lungs
- **Diffusion** - exchange of gases between the air-filled alveoli and the pulmonary circulation
- **Perfusion** - circulation of blood
End-tidal CO$_2$ (EtCO$_2$)

Monitors changes in

- **Ventilation** - asthma, COPD, airway edema, foreign body, stroke
- **Diffusion** - pulmonary edema, alveolar damage, CO poisoning, smoke inhalation
- **Perfusion** - shock, pulmonary embolus, cardiac arrest, severe dysrhythmias
Oxygenation and Ventilation

Oxygenation
- Oxygen for metabolism
- SpO_2 measures % of O_2 in RBC
- Reflects change in oxygenation within minutes

Ventilation
- Carbon dioxide from metabolism
- EtCO_2 measures exhaled CO_2 at point of exit
- Reflects change in ventilation within 10 seconds
ETCO₂ / PaCO₂ Correlation

ETCO₂ is usually 2-5 mmHg less than PaCO₂.

In healthy patients...
Capnography Waveform Patterns

- **Normal**
- **Hyperventilation**
- **Hypoventilation**
Basic Capnogram

- Measured EtCO₂
- Alveolar plateau
- Inspiratory downstroke
- Expiratory upstroke
- Respiratory baseline (should be 0 mmHg)
Capnography Waveform Patterns

- **Normal**
- **Hyperventilation**
- **Hypoventilation**
Waveform:
Regular Shape, Plateau Below Normal

Indicates CO$_2$ deficiency
✓ Hyperventilation
✓ Decreased pulmonary perfusion
✓ Hypothermia
✓ Decreased metabolism

Interventions
✓ Adjust ventilation rate
✓ Evaluate for adequate sedation
✓ Evaluate anxiety
✓ Conserve body heat
Hyperventilation

RR: EtCO₂

Normal

Hyperventilation
When would a rapid RR not show decreased ETCO₂?
Waveform: Regular Shape, Plateau Above Normal

Indicates increase in ETCO$_2$

✓ Hypoventilation
✓ Respiratory depressant drugs
✓ Increased metabolism

Interventions

✓ Adjust ventilation rate
✓ Decrease respiratory depressant drug dosages
✓ Maintain normal body temperature
Hypoventilation

RR ↓ : EtCO₂ ↑

![Graph showing normal and hypoventilation conditions with RR and EtCO₂ levels.](image-url)
When would a slow RR not show an elevated ETCO₂?

Hypothermia / Pre-arrest Hypo-metabolic states
Bronchospasm Waveform Pattern

Bronchospasm hampers ventilation
• Alveoli unevenly filled on inspiration
• Empty asynchronously during expiration
• Asynchronous air flow on exhalation dilutes exhaled CO_2

Alters the ascending phase and plateau
• Slower rise in CO_2 concentration
• Characteristic pattern for bronchospasm
• “Shark Fin” shape to waveform
Capnography Waveform Patterns

Normal

Bronchospasm
Capnography in Bronchospastic Conditions

Capnogram of Asthma

Changes in $d\text{CO}_2/dt$ seen with increasing bronchospasm

Capnography in Bronchospastic Conditions

COPD Case Scenario

Initial Capnogram A

Initial Capnogram B
Capnography Waveform Patterns

- **Normal**
- **Hyperventilation**
- **Hypoventilation**
- **Bronchospasm**
Ok Wizards...
Muscle Relaxants (curare cleft)

- Appear when muscle relaxants begin to subside
- Depth of cleft is inversely proportional to degree of drug activity
Now what?
An abrupt increase in PETCO₂ may indicate return of spontaneous circulation (ROSC). Increase in pulmonary circulation brings more CO₂ into lungs for elimination.
CAPNOGRAM

Sudden loss of waveform
- ET tube disconnected, dislodged, kinked or obstructed
- Loss of circulatory function

Decreasing EtCO₂
- ET tube cuff leak
- ET tube in hypopharynx
- Partial obstruction

CPR Assessment
- Attempt to maintain minimum of 10mmHg

Sudden increase in EtCO₂
- Return of spontaneous circulation (ROSC)

Bronchospasm (“Shark-fin” appearance)
- Asthma
- COPD

Hypoventilation

Hyperventilation

Decreased EtCO₂
- Apnea
- Sedation

www.dnbpediatrics.com
Context
Mechanism: Cardiac Output

Preload
Afterload
Rate
Rhythm
Contractility
Cardiac Output and ETCO$_2$

Low CO via hypovolemia - does not carry enough CO$_2$ per minute for exchange and exhalation.

Decreased ETCO$_2$

How do we interpret low ETCO$_2$? – hyperventilation? Poor lung function?

Decreased perfusion to the lungs ALONE can cause this finding!
Mechanism: ETCO$_2$ and Shock

CO$_2$ to lungs decreased

Alveolar PACO$_2$ decreases

Increase in alveolar dead space – decreased ETCO$_2$

Lower perfusion dilutes CO$_2$ available to alveoli
ETCO$_2$ and sustained Shock

CO$_2$ accumulates in distal tissues and venous blood

Return back to lungs in greater concentration

Increasing ETCO$_2$

Compensation mechanisms further help to maintain acceptable ETCO$_2$
Can ETCO₂ be used to predict / dx Shock?

Recent evidence of ETCO₂ being a predictor of high lactate levels
SHOCK leads to decreased ETCO₂ and Increased Lactate -
SHOCK INDEX

HR / Systolic BP

Normal between 0.5 and 0.8

120/80 with HR 80 80/120
= 0.67
Current uses for ETCO\textsubscript{2}

ETT placement confirmation

Cardiac arrest
 1. indicator of impending ROSC
 2. Indicator of unlikely survival.

Critical patient transport monitoring – another VS

Trauma???
Capnography and RSI

When considering sedation – the MOST sensitive indicator of hypoventilation and apnea is ETCO\textsubscript{2}!

1. Many studies have indicated a high rate of acute respiratory events, such as hypoventilation and apnea.

CHEST RISE assessment is not sensitive for detecting these events*
ETCO₂ and Respiratory Distress

With few exceptions, most patients who are in significant respiratory distress are hypercapnic.

What may be one of the exceptions?
Optimize Ventilation

Use capnography to titrate EtCO$_2$ levels in patients sensitive to fluctuations

Patients with suspected increased intracranial pressure (ICP)

• Head trauma
• Stroke
• Brain tumors
• Brain infections
The Future of ETCO$_2$

DKA in Pediatric patients
1. Relationship to HCO$_3$ and ETCO$_2$ (lower ETCO$_2$ can confirm DKA)

PE
1. Decreasing ETCO$_2$ in the face of hyperventilation (increase alveolar dead space)

Field Disaster Triage
1. What does it measure? (perfusion, ventilation, metabolism)

Anxiety control
1. Patients focus on the monitor and making the numbers change, causing general improvement in their condition.

Respiratory Rate analysis
1. Studies show health care professionals do a poor job of grabbing an accurate respiratory rate.
ETCO₂ is a valuable, multi-faceted tool

ETCO₂ is helpful in monitoring ventilation, perfusion, and metabolism

ETCO₂ can be helpful in hypoperfusion caused by trauma / shock and the TBI herniating patient

More research and correlation between ETCO₂ and trauma / Shock is necessary to drive trauma care

Research is ongoing as to additional uses for ETCO₂ technology
Thank you...
Jtemple@eicc.edu